

GIS in Mine Action

The Global Landmine and ERW Problem

GIS and RS in Mine Action

GICHD GIS and RS in Mine Action

Effective decision-making in mine action is driven by geographic factors

Applications in Mine Action

- generate intuitive maps at various scales, eg, for operators in the field and for strategic stakeholders at country level
- increase the accuracy of area size calculations
- improve prioritisation and planning of field operations
- help model the nominal operational difficulty of demining and determine which assets are suitable for a given task

Main info shown in 2D overview maps

- Geographic location of hazards, population, IDPs, infrastructures, working teams
- Historical information about hazardous areas
- Local conditions: terrain, weather, accessibility, traffic, security, logistical constraints
- Task management: number and type of assets deployed in an area

Representation of every hazardous area by a polygon delimiting its boundaries, and/or by a point symbol marker at its central XY coordinates

GICHD Base map for planning purposes

Road/path not longer in use (Bosnia & Herzegovina)

1996 2005

Land use change (Bosnia & Herzegovina)

2005 2011

Land use change maps

Activity maps

Contamination density maps

3D analysis

 Easy generation of 3D surfaces using RS data and GIS tools

- Advantages of the 3D analysis:
 - increase the accuracy of area size calculations of contaminated surfaces;
 - more realistically assess the operational difficulty of demining in a region by integrating slope and elevation into the analysis;
 - better prepare field operations;
 - determine the potential location of mines that may have moved over time through water run-off or surface movement; and
 - report on demining activities in a more visually intuitive manner.

Example of 3D map

Analysis of accessibility

- Best route between two points according to terrain conditions (slope, land cover, road quality), season, temporary/permanent blockages, hazardous areas
- Improvement of the logistical efficiency
- Applicable to road clearance management (analysis of impacts)

Prioritising Activities and Evaluating Costs

- Combining different data sources and spatial relationship between features (i.e. proximity) to:
 - prioritise hazard clearance
 - determine time and effort for clearance by integrating local terrain and infrastructure conditions
 - decide most suitable asset by comparing different scenarios under similar terrain conditions;
 - have better knowledge of the accessibility of a hazardous area
 - assess the degree of clearance difficulty on the basis of quantifiable terrain criteria (cost evaluation)

5D:Determining and Displaying the Degree of Operational Difficulty of

Multi Criteria Analysis (MCA)

Several options...

Conclusions

Advantages of RS and GIS

- Low risk
- Low cost **
- Multitemporal
- Consistent
- Objective
- Systematic

Thank you!

